Incidence of laboratory-confirmed *Cryptosporidium* in FoodNet, 1997-2004 (amended) Nadine Oosmanally, BS^{1,2}, Jeffrey L. Jones, MD, MPH¹, Duc J. Vugia, MD³, Alicia B. Cronquist, RN, MPH⁴, Suzanne D. Segler, MPH⁵, Brian Lee⁶, Perry F. Smith⁷, William E. Keene⁸, Frederick J. Angulo DVM, PhD¹, and the FoodNet EIP Working Group ¹CDC, Atlanta GA, ²Atlanta Research and Education Foundation, Atlanta, GA, ³California Dept of Health Services, Berkeley, CA, ⁴Colorado Dept of Public Health and Environment, Denver, CO, ⁵Georgia Emerging Infections Program, Atlanta, GA, ⁶Minnesota Dept of Health, Minneapolis, MN, ⁷New York State Dept of Health, Albany, NY, ⁸Oregon Dept of Health, Portland, OR **Background:** *Cryptosporidium* infections cause an estimated 300,000 illnesses annually in the U.S. Outbreaks of *Cryptosporidium* have been well described; however, few studies have examined trends in sporadic cryptosporidiosis in the U.S. **Methods:** The Foodborne Diseases Active Surveillance Network (FoodNet) has conducted active surveillance at >600 clinical laboratories for laboratory–confirmed *Cryptosporidium* since 1997. Personnel in participating FoodNet sites routinely contact clinical laboratories to ascertain all laboratory-confirmed cases among residents of the catchment area. A negative binomial regression model was used to estimate the change in incidence in 2004 compared to a 1997 baseline. **Results:** From 1997 to 2004, 4,219 laboratory-confirmed cases of *Cryptosporidium* were reported. The overall incidence of *Cryptosporidium* infection was 1.8 (cases/100,000 persons) (range: 0.42 in Maryland to 3.6 in Minnesota). The incidence of *Cryptosporidium* infection was higher in males (2.40) than females (0.87); this disparity was greatest in California and Georgia. When comparing age groups, incidence was highest in persons 0 to 4 years of age and in persons 25 to 44 years of age (5.23 and 2.23 respectively). When modeled, the incidence of *Cryptosporidium* infection was 39% lower in 2004 (95% CI: -51% to -24%) compared to 1997; when each site was modeled individually, the greatest decline was observed in California. **Conclusions:** Since 1997, the incidence of *Cryptosporidium* has declined significantly. The incidence of infection was consistently higher in males compared to females, with a two-fold difference observed in California and Georgia and in persons 25-44 years of age. Further investigation is warranted to explain the decline in *Cryptosporidium* incidence and the variation by gender among different demographic groups, but may be related to advancements in HIV therapy in HIV/AIDS patients.